Publications

2024

  • Sarica, A. (corresponding author), Pelagi, A., Aracri, F., Arcuri, F., Quattrone, A., Quattrone, A., & Alzheimer’s Disease Neuroimaging Initiative. (2024). Sex Differences in Conversion Risk from Mild Cognitive Impairment to Alzheimer’s Disease: An Explainable Machine Learning Study with Random Survival Forests and SHAP. Brain Sciences, 14(3), 201. 
  • Calomino, C., Quattrone, A., Bianco, M. G., Nisticò, R., Buonocore, J., Crasà, M., …, Sarica, A. & Quattrone, A. (2024). Combined cortical thickness and blink reflex recovery cycle to differentiate essential tremor with and without resting tremor. Frontiers in Neurology, 15, 1372262. 
  • Quattrone, A., Calomino, C., Sarica, A., Caligiuri, M. E., Bianco, M. G., Vescio, B., … & Quattrone, A. (2024). Neuroimaging correlates of postural instability in Parkinson’s disease. Journal of Neurology, 271(4), 1910-1920. 
  • Aracri, F., Quattrone, A., Bianco, M. G., Sarica, A., De Maria, M., Calomino, C., … & Quattrone, A. (2024). Multimodal imaging and electrophysiological study in the differential diagnosis of rest tremor. Frontiers in Neurology, 15, 1399124. 
  • Bianco, M. G., Cristiani, C. M., Scaramuzzino, L., Sarica, A., Augimeri, A., Chimento, I., … and Quattrone, A. (2024). Combined blood Neurofilament light chain and third ventricle width to differentiate Progressive Supranuclear Palsy from Parkinson’s Disease: A machine learning study. Parkinsonism & Related Disorders, 123, 106978. 

2023

  • Quattrone, A., Sarica, A., Buonocore, J., Morelli, M., Bianco, M. G., Calomino, C., … & Quattrone, A. (2023). Differentiating between common PSP phenotypes using structural MRI: A machine learning study. Journal of Neurology, 270(11), 5502-5515. 
  • Vaccaro, M. G., Pullano, L., Canino, S., Pastore, M., Sarica, A., Quattrone, A., … & Quattrone, A. (2023). Assessing of the Italian version of the Memory Strategy Test (TMS) in people with Parkinson disease: a preliminary descriptive psychometric study. Neurological Sciences, 44(11), 3895-3903. 
  • Aracri, F., Bianco, M. G., Quattrone, A., & Sarica, A. (corresponding author) (2023, September). Impact of imputation methods on supervised classification: a multiclass study on patients with parkinson’s disease and subjects with scans without evidence of dopaminergic deficit. In 2023 International Workshop on Biomedical Applications, Technologies and Sensors (BATS) (pp. 28-32). IEEE.
  • Vaccaro, M. G., Izzo, G., Sarica, A., La Vignera, S., & Aversa, A. (2023). Cluster analysis method reveals gender attitudes in sociosexual orientation of a Southern Italy population during the COVID-19 lockdown. Sexuality Research and Social Policy, 20(3), 950-963. 
  • Calomino, C., Quattrone, A., Sarica, A., Bianco, M. G., Aracri, F., De Maria, M., … & Quattrone, A. (2023). Neuroimaging correlates of postural instability in Progressive Supranuclear Palsy. Parkinsonism & Related Disorders, 113, 105768. 
  • Sarica, A. (corresponding author), Aracri, F., Bianco, M. G., Arcuri, F., Quattrone, A., Quattrone, A., & Alzheimer’s Disease Neuroimaging Initiative. (2023). Explainability of random survival forests in predicting conversion risk from mild cognitive impairment to Alzheimer’s disease. Brain Informatics, 10(1), 31. 
  • Sarica, A. (corresponding author), Aracri, F., Bianco, M.G., Vaccaro, M.G., Quattrone, A., & Quattrone, A. (2023). Conversion from Mild Cognitive Impairment to Alzheimer’s disease: a comparison of tree-based Machine Learning algorithms for Survival Analysis. In International Conference on Brain Informatics BI 2023, Springer, Cham. 
  • Aracri, F., Bianco, M.G., Quattrone, A., & Sarica, A. (corresponding author), (2023). Imputation of missing clinical, cognitive and neuroimaging data of Dementia using missForest, a Random Forest based algorithm. IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS). 
  • Bianco, M. G., Quattrone, A., Sarica, A., Aracri, F., Calomino, C., Caligiuri, M. E., … & Quattrone, A. (2023). Cortical involvement in essential tremor with and without rest tremor: a machine learning study. Journal of Neurology, 1-9. 
  • Bono, F., Mazza, M. R., Magro, G., Spano, G., Idone, G., Laterza, V., … & Sarica, A. (2023). Regional Targeted Subcutaneous Injection of Botulinum Neurotoxin Type A in Refractory Chronic Migraine: A Randomized, Double-Blind, Placebo-Controlled Study. Toxins, 15(5), 324. 

2022

  • Quarantelli, M., Quattrone, A., Sarica, A., Cicone, F., Cascini, G. L., & Quattrone, A. (2022). Functional connectivity of the cortico-subcortical sensorimotor loop is modulated by the severity of nigrostriatal dopaminergic denervation in Parkinson’s Disease. npj Parkinson’s Disease, 8(1), 1-11. 
  • Sarica, A. (corresponding author), Quattrone, A., & Quattrone, A. (2022). Introducing the Rank- Biased Overlap as Similarity Measure for Feature Importance in Explainable Machine Learning: A Case Study on Parkinson’s Disease. In International Conference on Brain Informatics (pp. 129-139). Springer, Cham. 
  • Bianco, M. G., Quattrone, A., Sarica, A., Vescio, B., Buonocore, J., Vaccaro, M. G., … & Quattrone, A. (2022). Cortical atrophy distinguishes idiopathic normal-pressure hydrocephalus from progressive supranuclear palsy: A machine learning approach. Parkinsonism & Related Disorders, 103, 7-14. 
  • Sarica, A., Quattrone, A., Crasà, M., Nisticò, R., Vaccaro, M. G., Bianco, M. G., … & Quattrone, A. (2022). Cerebellar voxel-based morphometry in essential tremor. Journal of Neurology, 1-7. 
  • Quattrone, A., Morelli, M., Bianco, M. G., Buonocore, J., Sarica, A., Caligiuri, M. E., … & Quattrone, A. (2022). Magnetic Resonance Planimetry in the Differential Diagnosis between Parkinson’s Disease and Progressive Supranuclear Palsy. Brain Sciences, 12(7), 949. 
  • Sarica, A. (corresponding author), Quattrone, A., & Quattrone, A. (2022). Explainable machine learning with pairwise interactions for the classification of Parkinson’s disease and SWEDD from clinical and imaging features. Brain Imaging and Behavior, 1-11.
  • Sarica, AlessiaEditorial for the special issue on “Machine Learning in Healthcare and Biomedical Application, Algorithms 15.3 (2022): 97. 
  • Maffei, C., Girard, G., Schilling, K. G., Aydogan, D. B., Adluru, N., Zhylka, A., … Sarica, A., … & Yendiki, A. (2022). Insights from the IronTract challenge: optimal methods for mapping brain pathways from multi-shell diffusion MRI. NeuroImage, 257, 119327. 
  • Quattrone, A., Sarica, A., La Torre, D., Morelli, M., Mechelli, A., Arcuri, P. P., & Quattrone, A. (2022). Progressive supranuclear palsy with marked ventricular dilatation mimicking normal pressure hydrocephalus. Neurological Sciences, 43(3), 1783-1790. 
  • Caligiuri, M. E., Quattrone, A., Bianco, M. G., Sarica, A., & Quattrone, A. (2022). Structural connectivity alterations in the motor network of patients with scans without evidence of dopaminergic deficit (SWEDD). Journal of Neurology, 1-8. 

2021

  • Sarica, A., Quattrone, A., Mechelli, A., Vaccaro, Morelli, M. & Quattrone, A. (2021). Corticospinal Tract abnormalities and Ventricular Dilatation: a transdiagnostic comparative tractography study. Neuroimage: Clinical, 102862. 
  • Sarica, A., Barone, S., Nisticò, R., Chiriaco, C., De Martino, A., Magro, G., … & Valentino, P. (2021). Microstructural alterations of the spinothalamic tract and neuropathic pain: A diffusion tensor imaging study in relapsing remitting multiple sclerosis. Journal of the Neurological Sciences, 429. 
  • Sarica, A. (corresponding author), Quattrone, A. & Quattrone, A. (2021). Explainable Boosting Machine for predicting Alzheimer’s disease from MRI Hippocampal Subfields. Brain Informatics, BI 2021, LNAI 12960, pp. 1–10 [In Press]. 
  • Jia, X. Z., Zhao, N., Dong,…, Sarica, A., … & Zang, Y. (2021). Small P values may not yield robust findings: an example using RESTmetaPD. Science Bulletin. 
  • Sarica, A., Vaccaro, M. G., Quattrone, A., & Quattrone, A. (2021). A Novel Approach for Cognitive Clustering of Parkinsonisms through Affinity Propagation. Algorithms, 14(2), 49.
  • Saccà, V., Sarica, A., Quattrone, A., Rocca, F., Quattrone, A., & Novellino, F. (2021). Aging effect on head motion: A Machine Learning study on resting state fMRI data. Journal of Neuroscience Methods, 352, 109084. 
  • Sarica, A., Quattrone, A., Quarantelli, M., Arcuri, P. P., Mechelli, A., La Torre, D., … & Quattrone, A. (2021). Reduced Striatal DAT Uptake Normalizes After Shunt in Normal-Pressure Hydrocephalus. Movement disorders: official journal of the Movement Disorder Society, 36(1), 261-262. 

2020

  • Vaccaro, M. G., Sarica, A. (corresponding author), Quattrone, A., Chiriaco, C., Salsone, M., Morelli, M., & Quattrone, A. (2020). Neuropsychological assessment could distinguish among different clinical phenotypes of progressive supranuclear palsy: A Machine Learning approach. Journal of Neuropsychology. 
  • Quattrone, A., Sarica, A., La Torre, D., Morelli, M., Bianco, M. G., & Quattrone, A. (2020). Reply to:“MRI Linear Measurements in Normal Pressure Hydrocephalus Versus Progressive Supranuclear Palsy”. Movement Disorders, 35(11), 2122-2122. 
  • Quattrone, A., Sarica, A., La Torre, D., Morelli, M., Vescio, B., Nigro, S., … & Quattrone, A. (2020). Magnetic Resonance Imaging Biomarkers Distinguish Normal Pressure Hydrocephalus From Progressive Supranuclear Palsy. Movement Disorders. 
  • Cerasa, A., Cristiani, E., De Luca, B., De Narda, M. L., Cundò, M. C., Bottani, S. C.,Sarica, A, … & De Canditiis, D. (2020).. May personality influence the selection of life-long mate? A multivariate predictive mode. CURRENT PSYCHOLOGY. 

2019

  • Sarica, A., Valentino, P., Nisticò, R., Barone, S., Pucci, F., Quattrone, A., … & Quattrone, A. (2019). Assessment of the Corticospinal Tract Profile in Pure Lower Motor Neuron Disease: A Diffusion Tensor Imaging Study. Neurodegenerative Diseases, 19(2), 1-11. 
  • Rapisarda, L., Mazza, M. R., Tosto, F., Gambardella, A., Bono, F., & Sarica, A. (2018). Relationship between severity of migraine and vitamin D deficiency: a case-control study. Neurological Sciences, 39(1), 167-168. 
  • Saccà, V., Sarica, A. (equally contributed), Novellino, F., Barone, S., Tallarico, T., Filippelli, E., … & Quattrone, A. (2019). Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data. Brain imaging and behavior, 13(4), 1103-1114. 
  • Barbagallo, G., Morelli, M., Quattrone, A., Chiriaco, C., Vaccaro, M. G., Gullà, D., Sarica A. … & Arabia, G. (2019). In vivo evidence for decreased scyllo-inositol levels in the supplementary motor area of patients with progressive supranuclear palsy: a proton MR spectroscopy study. Parkinsonism & related disorders, 62, 185-191. 
  • Sarica, A., Curcio, M., Rapisarda, L., Cerasa, A., Quattrone, A., & Bono, F. (2019). Periventricular white matter changes in idiopathic intracranial hypertension. Annals of clinical and translational neurology, 6(2), 233-242. 

2018

  • Barbagallo, G., Morelli, M., Quattrone, A., Chiriaco, C., Vaccaro, M. G., Gullà, D., …, Sarica, A. & Arabia, G. (2018). In vivo evidence for decreased scyllo-inositol levels in the supplementary motor area of patients with Progressive Supranuclear Palsy: A proton MR spectroscopy study. Parkinsonism & related disorders. 
  • Sarica, A. (corresponding author), Vasta, R., Novellino, F., Vaccaro, M. G., Cerasa, A., & Quattrone, A. (2018). MRI Asymmetry Index of Hippocampal Subfields increases through the continuum from the Mild Cognitive Impairment to the Alzheimer’s disease. Frontiers in Neuroscience, 12, 576. 
  • Vasta, R., Cerasa, A., Sarica, A., Bartolini, E., Martino, I., Mari, F., … & Labate, A. (2018). The application of artificial intelligence to understand the pathophysiological basis of psychogenic nonepileptic seizures. Epilepsy & Behavior. 
  • V. Saccà V., Sarica, A. (equally contributed), Novellino F., Barone S., Tallarico T., Filippelli E., A. Granata A., Chiriaco C., Bossio R. B., Valentino P. & Quattrone A. (2018). Evaluation of Machine Learning algorithms performance for the prediction of early Multiple Sclerosis from Resting-State FMRI Connectivity data. Brain imaging and behaviour. In Press. 
  • Rapisarda, L., Mazza, M. R., Tosto, F., Gambardella, A., Bono, F., & Sarica, A. (2018). Relationship between severity of migraine and vitamin D deficiency: a case-control study. Neurological sciences: official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 39(Suppl 1), 167-168. 
  • Bertero, A., Liska, A., Pagani, M., Parolisi, R., Masferrer, M. E., Gritti, M., , Sarica, A., … & Buffelli, M. (2018). Autism-associated 16p11. 2 microdeletion impairs prefrontal functional connectivity in mouse and human. Brain. 
  • Sarica, A., Cerasa, A., Quattrone, A., & Calhoun, V. (2018). Editorial on Special Issue: Machine learning on MCI. Journal of Neuroscience Methods 302, 1–2. 
  • Jia, X. Z., Zhao, N., Barton, B., Burciu, R., Carriere, N., Cerasa, A., Sarica A., … & Delmaire, C. (2018). Small effect size leads to reproducibility failure in resting-state fMRI studies. bioRxiv, 285171. 

2017

  • Novellino, F., Vasta, R., Sarica A., Chiriaco, C., Maria, S., Maurizio, M., … & Quattrone, A. (2017). Relationship between hippocampal subfields and category cued recall in AD and PDD: A multimodal MRI study. Neuroscience, 371, 506-517. 
  • Caligiuri, M. E., Mumoli, L., Sarica, A., Trimboli, M., Cherubini, A., Gambardella, A., & Labate, A. (2017). Widespread white matter alterations predict refractoriness in Mild Temporal Lobe Epilectic patients. Epilepsia, Vol. 58, pp. S178-S179. 
  • Maier-Hein, K., Neher, P., Houde, J. C., Cote, M. A., Garyfallidis, E., Zhong, J., …, Sarica, A., … & Hilgetag, C. (2017). The challenge of mapping the human connectome based on diffusion tractography. Nature Communications, 8, 1349. 
  • Cerasa, A., Lofaro, D., Cavedini, P., Martino, I., Bruni, A., Sarica, A., … & Palmacci, A. (2017). Personality biomarkers of pathological gambling: A machine learning study. Journal of Neuroscience Methods, 294, 7-14. 
  • Sarica, A. (corresponding author), Cerasa, A., Quattrone, A. (2017). Random Forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: a systematic review. Frontiers in Aging Neuroscience, 9, 329. 
  • Nicoletti, G., Valentino, P., Chiriaco,C., Granata, A., Barone, S., Filippelli,E., Caligiuri,M.E., Vescio,B., Sarica, A. and Quattrone A. (2017). Superior Cerebellar Peduncle Atrophy Predicts Cognitive Impairment in Relapsing Remitting Multiple Sclerosis Patients with Cerebellar Symptoms: A DTI Study. J Mult Scler (Foster City), 4:2. 
  • Vasta, R., Sarica, A. (equally contributed), Bisulli, F., Di Gennaro, G., D’Aniello, A., Difrancesco, J. C., … & Tinuper, P. (2017). Advanced morphological neuroimaging study in lateral temporal lobe epilepsy: A multicentric study. Epilepsy and Behavior, 74, 69-72. 
  • Sarica, A., Cerasa, A., Valentino, P., Yeatman, J., Trotta, M., Barone, S., … & Quattrone, A. (2017). The corticospinal tract profile in amyotrophic lateral sclerosis. Human brain mapping, 38(2), 727-739. 
  • Cerasa, A., Sarica, A., Martino, I., Fabbricatore, C., Tomaiuolo, F., Rocca, F., … & Quattrone, A. (2017). Increased cerebellar gray matter volume in head chefs. PloS one, 12(2), e0171457. 

2016

  • Novellino, F., R. Vasta, G. Nicoletti, C. Chiriaco, M. Vaccaro, M. Morelli, M. Salsone, G. Arabia, A. Sarica, & A. Quattrone. “Memory impairment in AD and PDD: hippocampal subfields involvement and category cued recall.” In JOURNAL OF ALZHEIMERS DISEASE, vol. 53, pp. S19-S19. NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS: IOS PRESS, 2016. 
  • Maier-Hein, K., Neher, P., Houde, J. C., Cote, M. A., Garyfallidis, E., Zhong, J., …, Sarica, A., … & Ji, Q. (2016). Tractography-based connectomes are dominated by false-positive connections. bioRxiv. 
  • Cerasa, A., Lombardo, G., Tripodi, D., Stilisano, E., Sarica, A., Gramigna, V., Martino, I., Pullera, A., Tigani, S., De Carlo, Y. (2016) Five-factor personality traits in priests. Personality and Individual Differences, 95:89-94. 

2015

  • Sarica, A., Cerasa, A., & Quattrone, A. (2015). The Neurocognitive Profile of the Cerebellum in Multiple Sclerosis. International journal of molecular sciences, 16(6), 12185-12198. 
  • Bron, E. E., Smits, M., van der Flier, W. M., Vrenken, H., Barkhof, F., Scheltens, P., … Sarica, A., . . . , Klein, S. (2015). Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge. NeuroImage, 111, 562-579. 
  • Venturella, R., Lico, D., Sarica, A., Falbo, M. P., Gulletta, E., Morelli, M., …, Zullo, F. (2015). OvAge: a new methodology to quantify ovarian reserve combining clinical, biochemical and 3D-ultrasonographic parameters. Journal of ovarian research, 8(1), 21. 

2014

  • Lico, D., Venturella, R., Sarica, A., Falbo, M., Gulletta, E., Cannataro, M., & Zullo, F. (2014). OC01. 05: A new algorithm to predict ovarian age combining clinical, biochemical and 3D-ultrasonographic parameters. Ultrasound in Obstetrics & Gynecology, 44(S1), 2-2. 
  • Sarica, A., Cerasa, A., Vasta, R., Perrotta, P., Valentino, P., Mangone, G., … & Quattrone, A. (2014). Tractography in amyotrophic lateral sclerosis using a novel probabilistic tool: A study with tract-based reconstruction compared to voxel-based approach. Journal of Neuroscience Methods, 224, 79-87. 
  • Venturella, R. and Lico, D. and Sarica, A. and Falbo, M. P. and Gulletta, E. and Cannataro, M. and Zullo, F (2014). A new algorithm to predict ovarian age combining clinical, biochemical and 3D-ultrasonographic parameters. Fertility and Sterility, Volume 102 , Issue 3, e145. 

2013

  • Zullo, F., Lico, D., Venturella, R., Di Cello, A., Sarica, A., Falbo, M. P., … & Cannataro, M. (2013). A New Algorithm To Predict Ovarian Age Combining Clinical, Biochemical and 3D-Ultrasonographic Parameters. Preliminary Results. Journal of Minimally Invasive Gynecology, 20(6), S46-S46. 
  • Sarica, A., Guzzi, P. H., & Cannataro, M. (2013). Building and mining web-based questionnaires and surveys with SySQ. Interdisciplinary Sciences: Computational Life Sciences, 5(3), 233-239. 
  • Cannataro, M., Guzzi, P. H., & Sarica, A. (2013). Data mining and life sciences applications on the grid. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(3), 216-238. 

Leave a comment