🔬 Unlocking Brain Insights with AI: Three New Studies on Brain Age, Well-being, and Sex Differences! đź§ đź“Š

🚀 New Research Alert! 🚀
Excited to share that three of my proceedings have just been published! 🎉 These studies leverage large-scale international neuroimaging datasets and cutting-edge interdisciplinary AI techniques to mine knowledge from brain structure and function.

🔍 What’s inside?
⚖️ Sex-Based Brain Morphometry Differences: Conducted by my PhD student Chiara Camastra, this research explores Explainable AI (XGBoost, SHAP, EBM) to identify sex-specific brain structural patterns.
👩‍⚕️ Psychological Well-being Prediction: Conducted by my PhD student Assunta Pelagi, this study applies Machine Learning and SHAP to reveal key emotional and social predictors of well-being.
🧠 Brain Age Estimation: Using Random Forests and Conformal Prediction for uncertainty quantification in brain aging analysis.

These works highlight how AI, neuroscience, and cognitive science converge to uncover new insights into the human brain, driving advancements in precision medicine and neurological research.

💡 The big picture?
🔬 Harnessing large neuroimaging datasets
📊 Integrating AI-driven predictions with uncertainty quantification
🧩 Advancing explainable and interpretable machine learning

đź”— Read more:
📄 Brain Age Estimation: DOI: 10.1007/978-3-031-82487-6_10
📄 Well-being Prediction (by Assunta Pelagi): DOI: 10.1007/978-3-031-82487-6_19
📄 Sex-based Morphometry Analysis (by Chiara Camastra): DOI: 10.1007/978-3-031-82487-6_17

A big thank you to my PhD students Assunta Pelagi and Chiara Camastra for their contributions to these studies 💪💪💪!

#AI #Neuroscience #MachineLearning #ExplainableAI #BrainResearch #Neuroimaging #BigData #PrecisionMedicine #ACAIN2024

Leave a comment